Trimethylamine Complexes of some Group VB Trihalides

S. R. WADE and G. R. WILLEY

Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, U.K. Received October 27, 1978

The white mono-adducts $AsBr_3 \cdot NMe_3$, $SbX_3 \cdot NMe_3$ (X = Cl, Br) and the pale yellow bis-adducts $SbX_3 \cdot 2NMe_3$ (X = Cl, Br) have been prepared. Characterisation follows from analytical and IR and NMR (¹H and ¹³C) spectral data. Possible structures and their stereochemical implications are considered.

Introduction

The Group V trihalides react with a variety of donors to form complexes of which the majority assume a stereoactive lone pair [1]. With trimethylamine an early report [2] of the reactions with arsenic(III) and antimony(III) chlorides describes the white non-stoichiometric complexes AsCl₃.0.82 NMe₃ and SbCl₃·1.10NMe₃. Subsequent interest in the Group V trihalides-NMe₃ system indicates that the former is in fact the 1:1 complex with a pseudotrigonal bipyramidal structure in which the ligand and lone pair occupy axial and equatorial positions respectively [3]. There is no further mention of the latter. In the case of phosphorus(III) halide complexes, thermally unstable under normal conditions [4, 5], low temperature ir and Raman studies of matrix isolated PCl₃·NMe₃ and PBr₃·NMe₃ support a similar AX₃LE structure. Formation of a second complex PCl₃·2NMe₃ based on a cis pseudo-octahedral geometry is also suggested [6].

As part of a continuing interest in the donorreducer properties of trimethylamine [7] we have studied its reactions with arsenic(III) and antimony-(III) halides and herein report the 1:1 complexes $MX_3 \cdot NMe_3$ (M = As, Sb; X = Cl, Br) and the 1:2 complexes SbX₃ · 2NMe₃ (X = Cl, Br).

Experimental

All preparations were carried out in a gloved box flushed with dry nitrogen. AsCl₃ (Hopkins and Williams) and AsBr₃ (Pfaltz and Bauer) were redistilled under reduced pressure prior to use. SbCl₃(BDH) and SbBr₃(BDH) were recrystallised from benzene solutions. Solvents were dried over CaH₂/P₂O₅ and distilled under nitrogen. NMe₃(BDH), dried over P_2O_5 at 196K, was distilled in an all-glass vacuum line system as required. Ir spectra were recorded on Perkin Elmer 621 and Fourier FS720 instruments with samples as nujol and HCB mulls held between CsI plates. Nmr spectra (¹H, 90 mHz; ¹³C, 22.6 mHz) were recorded on a Bruker WH 90 spectrometer with deuterochloroform solutions. Microanalyses were performed commercially excepting halide which was evaluated by the Volhard titration.

Preparation of Complexes

In a typical reaction trimethylamine, calculated by volume on a closed section of the vacuum line, was distilled onto the frozen solution (90 K) of the metal halide in benzene contained in a single ampoule glass vessel. On warming to 273 K the solution was stirred for several hours to precipitate the appropriate product.

(a) As an example AsCl₃ (6.3 g, 34.7 mmol) and NMe₃ (775 cm³, 34.6 mmol) gave the white *product* AsCl₃•NMe₃ [3] which was purified by sublimation under high vacuum (10^{-4} mm Hg) at room temperature. Yield 3.1 g (37%). Anal. Calcd for C₃H₉NAsCl₃: C, 15.0; H, 3.7; N, 5.8; Cl, 44.1. Found. C, 14.8; H, 3.4; N, 5.6; Cl, 44.0%. A repeat experiment using a three-fold excess of trimethylamine yielded an identical product.

(b) AsBr₃ (4.3 g, 13.6 mmol) and NMe₃ (306 cm³, 13.6 mmol) gave the AsBr₃ NMe₃ as a white *product* which was purified by sublimation under high vacuum (10^{-4} mm Hg) at 318 K. Yield 1.1 g (22%). Mp 360–361 K (uncorr). *Anal.* Calcd. for C₃H₉-NAsBr₃. C, 9.6; H, 2.4; N, 3.7; Br, 64.1. Found. C, 9.7; H, 2.3; N, 3.6; Br, 64.1%. Again a three-fold excess of trimethylamine provides an identical product.

(c) SbCl₃ (7.6 g, 33.3 mmol) and NMe₃ (745 cm³, 33.3 mmol) gave white SbCl₃ \cdot NMe₃, which was purified by washing with benzene in vacuum, followed by pumping for several hours. Yield 4.1 g (42%). Mp 466-468 K (uncorr). *Anal.* Calcd. for C₃H₉NSbCl₃: C, 12.5; H, 3.5; N, 5.0; Cl, 37.1; Found. C, 12.5; H, 3.7; N, 5.1; Cl, 37.1%.

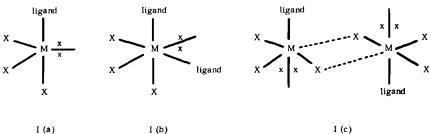
	¹ Ηδ ppm (90 mHz) ^a	¹³ C δ ppm (22.6 mHz) ^a
AsCl ₃ •NMe ₃	2.42	46.21
AsBr3•NMe3	2.51	47.18
SbCl ₃ ·NMe ₃	2.47	46.73
SbBr3 · NMe3	2.50	b
SbCl ₃ ·2NMe ₃	2.49	46.53
$SbBr_3 \cdot 2NMe_3$	2.51	47.83

TABLE 1. Nmr Data for the MX₃·NMe₃ and MX₃·2NMe₃ Complexes.

^aCD₂Cl₂ and CDCl₃ solutions with reference TMS. ^bInsufficient solubility.

(d) SbBr₃ (8.2 g, 22.7 mmol) and NMe₃ (508 cm³, 22.7 mmol) gave white SbBr₃•NMe₃, which was purified by washing with benzene in vacuum, then pumping dry. Yield 4.6 g (48%). Mp (decomp.) 477-480 K. Anal. Calcd. for C₃H₉NSbBr₃: C, 8.5; H, 2.1; N, 3.3; Br, 56.9; Found. C, 8.7; H, 2.1; N, 3.5; Br, 56.9%.

(e) SbCl₃ (6.0 g, 26.3 mmol) and NMe₃ (1310 cm³, 58.5 mmol) gave pale yellow SbCl₃·2NMe₃, which was washed and dried as above. Mp (decomp.) 359 K. Anal. Calcd. for C₆H₁₈N₂SbCl₃: C, 20.8; H, 5.2; N, 8.0; Cl, 30.7. Found C, 20.4; H, 5.1; N, 7.9; Cl. 30.6%.


(f) SbBr₃ (5.9 g, 16.3 mmol) and NMe₃ (764 cm³, 34.1 mmol) gave pale yellow SbBr₃·2NMe₃, which was washed and dried as above. Mp (decomp.) 380 K. Anal. Calc for C₆H₁₈N₂SbBr₃: C, 15.0; H, 3.8; N, 5.8; Br, 50.0. Found. C, 14.7; H, 3.6; N, 5.9; Br, 50.0%.

Results and Discussion

Reaction of MX_3 (M = As, Sb; X = Cl, Br) and trimethylamine at 273 K in benzene gives two series of products: the white $MX_3 \cdot NMe_3$ (M = As, Sb; X = Cl,

Br). The existence of PCl₃·2NMe₃ only at very low temperature, suggests a general thermal instability of these bis-adducts. The products are soluble to varying extents in the general organic solvents but decomposition occurs in the chlorinated solvents $(CH_2Cl_2, CHCl_3)$ after ~25 min. This is possibly the result of solvent attack on the amine to initially give quaternary ammonium salts in a Menshutkin type reaction [8].

Proton and ¹³C nmr spectra (Table 1) show one sharp singlet in all cases indicating stereochemically equivalent CH₃ groups. Strong bands in the ir spectra at 1247–1259 ν_{as} (CN), 998–1004 ρ (CH₃), 794– 803 $v_s(CN)$ and 456-474 $\delta(NMe_3)$ cm⁻¹ respectively are associated with co-ordinated amine. In the low ir region broad intense bands at 387, 356 cm⁻¹ (AsCl₃•NMe₃), 285 cm⁻¹ (AsBr₃•NMe₃), 185 cm⁻¹ (SbCl₃•NMe₃), 180 cm⁻¹ (SbBr₃•NMe₃), 195 cm⁻¹ (SbCl₃·2NMe₃) and 176 cm⁻¹ (SbBr₃·2NMe₃) are tentatively assigned to metal-halogen stretching modes [6, 9]. Single crystal X-ray studies of AsCl₃. NMe₃ [3] and SbCl₃·PhNH₂ [10] and vibrational analysis of $PX_3 \cdot NMe_3$ (X = Cl, Br) [6] point to the

Br) and the pale yellow $SbX_3 \cdot 2NMe_3$ (X = Cl, Br) adducts. All are moisture sensitive ranging in extent from AsCl₃·NMe₃ which fumes immediately in air to $SbBr_3 \cdot 2NMe_3$ which decolourises only after several hours exposure. Thermal stability was of the order Sb > As, Br > Cl. Pyrolysis of $SbCl_3 \cdot 2NMe_3$ in high vacuum at 359 K gave the mono-adduct as a white sublimate in $\sim 10\%$ yield but no such reaction was observed for the bromo-analogue. No evidence could be found for the existence of $A_{s}X_{3} \cdot 2NMe_{3}$ (X = Cl, I (c)

pseudo trigonal bipyramidal structure I(a) and it seems reasonable to propose the same for AsBr₃. NMe₃. Similarly by analogy with SbCl₃·2PhNH₂ [11] and SbCl₃·2Ph₃AsO [12] the bis-adducts $SbX_3 \cdot 2NMe_3$ (X = Cl, Br) are proposed to have structure I(b). The same pseudo-octahedral configuration is presumed for the recent bis-amine complex SbCl₃. $2NH_3$ [13]. In the case of $SbX_3 \cdot NMe_3$ (X = Cl, Br), however, the close similarity in terms of low ir spectra with the corresponding bis-adducts suggests another structure than I(a). We propose the pseudo square-based pyramidal structure I (c) in which the SbX₃ unit is realigned to give a long range Sb-X interaction leading to weak halogen bridging. This type of secondary bonding to give loosely joined dimeric molecules has been established for AsCl₃· dmit (dmit = 1,3-dimethyl-2(3H)-imidazolethione) [14].

Acknowledgment

We thank the SRC for the award of a maintenance grant (SRW).

References

I. E.g. G. C. Pellacani, G. Peyronel, W. Malavasi and L. Menabue, J. Inorg. Nucl. Chem., 39, 1855 (1977).
S. T. Yuan and S. K. Madan, Inorg. Chim. Acta, 6, 463 (1972).

- 2 R. R. Holmes and E. F. Bertaut, J. Am. Chem. Soc., 80, 2980 (1958).
- 3 M. Webster and S. Keats, J. Chem. Soc. A, 836 (1971).
- 4 R. R. Holmes, J. Phys. Chem., 64, 1295 (1960).
- 5 R. R. Holmes, and E. F. Bertaut, J. Am. Chem. Soc., 82, 5285 (1960).
- 6 D. H. Boal and G. A. Ozin, J. Chem. Soc. Dalton, 1824 (1972).
- 7 See e.g., J. Hughes and G. R. Willey, Inorg. Chim. Acta, 24, L81 (1977); ibid., 20, 137 (1976).
- 8 N. Menshutkin, Z. Physik. Chemie, 5, 589 (1890).
- 9 M. J. Deveney and M. Webster, J. Chem. Soc. A, 1643 (1970).
- 10 R. Hulme and J. Scruton, J. Chem. Soc. A, 2448 (1968).
- 11 R. Hulme, D. Mullen and J. Scruton, Acta Cryst., A25, S171 (1969).
- 12 I. Lindquist, 'Inorganic Adduct Molecules of Oxo-Compounds', Springer Verlag, Berlin (1963) p. 71.
- 13 A. K. Biswas, J. R. Hall and D. P. Schweinsberg, Inorg. Nucl. Chem. Letters, 14, 275 (1978).
- 14 D. J. Williams and K. J. Wynne, Inorg. Chem., 17, 1108 (1978);

D. J. Williams, C. O. Quicksall and K. J. Wynne, Inorg. Chem., 17, 2071 (1978).